Tetrahedron Letters, Vol.27, No.4, pp 441-444, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

HIGH YIELD PREPARATION OF CYCLIC DISULFIDES USING ALKYLTIN THIOLATES¹

David N. Harpp^{*}, Steve J. Bodzay, T. Aida and T.H. Chan Department of Chemistry McGill University, Montreal, Que., H3A-2K6

Abstract: Cyclic disulfides with ring sizes ranging from 5 to 10 are formed by iodination or bromination of alkyltin thiolates without the need of high dilution.

There have been a number of recent reports on tin-directed cyclization reactions². These mild, template-driven ring closure procedures show good yields of monomer formation. The following is a report of a tin-mediated synthesis of cyclic disulfides in good yield without the necessity of employing high dilution³ or titrimetric^{3b,4} techniques.

The cyclic disulfides $(\underline{4a-4f})$ were prepared by oxidative cyclization with bromine or iodine from the corresponding <u>bis(tri-n-butyltin)dithiolates⁵</u> (<u>3a-3f</u>); these were all prepared by the same general procedure (Schemel).

The synthesis of <u>bis</u>(tri-<u>n</u>-butyltin)-1,4-butanedithiolate (<u>3b</u>) and subsequently 1,2dithiane (<u>4b</u>) is presented. To 10mmol of 1,4-butanedithiol and 22mmol of triethylamine in 75 ml of CCl₄ is added 20mmol of tri-<u>n</u>-butyltin chloride; the reaction mixture was allowed to stir for 3 hours. The triethylamine hydrochloride salt is collected and the filtrate washed with 5% acetic acid, dried (MgSO₄) and evaporated in vacuo affording only 3b as a very viscous liquid.

To a 0.05M solution of <u>3b</u> (used without further purification) in CH_2Cl_2 at 0^oC is added at a constant rate of 2 ml/ minute, a 0.20M solution of either I_2 or Br_2 in CH_2Cl_2 . These oxidation reactions along with the workup are carried out in subdued light with Al-foiled glassware to avoid polymerization.^{3b} Typically, the total addition time is 5 to 10 minutes. The reaction mixture is allowed to stir for 5 minutes before being washed with 5% sodium thiosulfate, dried (MgSO₄) and evaporated. After purification on 200 g of aluminum oxide, the

441

TABLE 1

	<u>Disulfide (4)</u>	<u>% YIELDS</u> ª		<u>lit. %</u> yields	<pre>mp/refractive index</pre>	
		<u>I</u> 2	Br ₂		this work	<u>lit.</u>
a	1,2-dithiolane	92	88	70-84 ^b , 90 ^c		
b	1,2-dithiane	96	95	93-95 ^b 96 ^c ,95 ^d	30-31	31-31.5 ^d ,29 ^e
<u>c</u>	1,2-dithiepane	74	76	80 ^d , 82 ^c , 13 ^f	1.5681	1.569 ^b ,1.570 ^d
<u>d</u>	1,2-dithiacyclooctane	37	36	30 ^d , 86 ^c ,	1.567	1.5698 ^d
e	1,2-dithiacyclononane	42	39	45 ^d ,74 ^g , 2 ^f	1.5627	1.5642 ^d ,1.5623 ^g
<u>f</u>	1,2-dithiacyclodecane	61	59	50 ^d , 3 ^f	1.5407	1.5461 ^d

Table 1:a) yields of cyclic disulfides from the dithiols. All yields are isolated except entry 4a. The yield of 4a was determined by UV (λ max 330 nm e=142)⁸; attempts to isolate 4a result in polymerization. Other entries have physical properties which match published data; their MS, NMR and Raman spectra are consistent with the indicated structure; b) ref 3b; c) ref 9, this reference does not have experimental, physical or spectroscopic data; d) ref 2b, long addition time of oxidant (FeCl₃) ranged from 2 to 9 days; e) ref 10; f) ref 2c; solution concentration was 0.2 to 0.4 M and addition of oxidant took 2 hours; g) ref 3a, titrimetric addition, final concentration is 0.04M and addition time was 4 hours.

TABLE 2

<u>Disulfide (4):</u> (ring size)	<u>a</u> (5)	<u>b</u> (6)	<u>c</u> (7)	<u>d</u> (8)	<u>e</u> (9)	<u>f</u> (10)
ratio of yields: (with Sn / without Sn)	1.8/1	1.1/1	2.7/1	12/1	10/1	11/1

disulfide <u>4b</u> (mp 30-31^oC) is obtained with a yield of 95% or better. Alternatively, once the oxidation is complete, excess KF can be added to the reaction mixture and this mixture refluxed so as to form insoluble tri-alkyltin fluoride⁶. Purification of the disulfides can then be achieved with a lesser amount of aluminum oxide, however the isolated yields of the disulfides 4 is lower.

This method permits a rapid synthesis of cyclic disulfides in good to excellent yields, and appears to indicate some kind of "template effect"^{2,7} inasmuch as dithiol oxidation under identical conditions (concentration of reactants and addition time of oxidant) shows lower yields of monomer formation (Table 2).

Scheme 1

нs-(сн ₂)-sн	2 R ₃ SnCl	CCI4	R ₃ Sn-S (CH ₂) _n R ₃ Sn-S	CH ₂ Cl ₂	S (CH ₂) _n	
<u>1a-1f</u>	2		<u>3a-3f</u>		<u>4a-4f</u>	

n= 3-8 R= n-butyl

Acknowledgements:

We thank the National Research Council of Canada and the Ministère de l'Education du Québec for financial support.

References

- Organic Sulfur Chemistry. Part 50; for Part 49, see D. N. Harpp, T. Aida and T.H. Chan, <u>Tetrahedron Lett.</u>, 26, 1795 (1985).
- 2. a) K. Steliou and M.A. Poupart, <u>J. Am. Chem. Soc.</u> <u>105</u>, 7130 (1983); b) K. Steliou,
 A. Szczygielska-Nowosielska, A. Favre, M.A. Poupart, S. Hanessian, <u>J. Am. Chem. Soc.</u> <u>102</u>,
 7578 (1980); c) A. Shanzer, J. Libman, H. Gottlieb, F. Frolow, <u>J. Am. Chem. Soc.</u> <u>104</u>,
 4220 (1982); d) A. Shanzer, N. Mayer-Shochet, <u>J.C.S. Chem. Comm.</u> <u>176 (1980); e) A.</u>
 Shanzer and Elisha Berman, <u>J.C.S. Chem. Comm.</u> <u>259 (1980); f) A. Shanzer, J.Libman,
 F. Frolow, <u>Acc. Chem. Res. 16</u>, 60 (1983).
 </u>

- 3. a) L. Field and C.H. Foster, <u>J. Org. Chem.</u> <u>35</u>, 749 (1970); b) A. Schoberl and H. Grafje,
 <u>Ann.</u> <u>614</u>, 66 (1958); c) J.G. Affleck and G. Dougherty, <u>J. Org. Chem.</u> <u>15</u>, 865 (1950).
- 4. a) M.H. Goodrow and W.K. Musker, <u>Synthesis</u> 457 (1981); b) L. Field and R.B. Barbee, <u>J</u>.
 <u>Org. Chem. 34</u>, 36 (1968).
- 5. a) D.N. Harpp, T. Aida, T.H. Chan, <u>Tetrahedron</u> <u>Lett</u>. 2853 (1979); b) M. Wieber and M. Schmidt, J. Organomet. <u>Chem.</u> 1, 336 (1964); <u>2</u>, 129 (1964).
- 6. J.E. Leibner, J. Jacobus, J. Org. Chem. 44, 449 (1979).
- 7. a) S. Shinkai, K. Inuzuka, O. Miyazaki, O. Manabe, J. Am. Chem. Soc. 107, 3950 (1985);
 b) S. Shinkai, K. Inuzuka, O. Miyazaki, O. Manabe, J. Org. Chem. 49, 3440 (1984); c)
 L. Mandolini and B. Masci, J. Am. Chem. Soc. 106, 168 (1984); d) W.H. Kruizinka and
 R.M. Kellogg, J. Am. Chem. Soc. 103, 5183 (1981); e) J. Buter and R.M. Kellogg, J.
 Org. Chem. 46, 4481 (1981); f) W.H. Rastetter and D.P. Phillion, J. Org. Chem. 46, 3209 (1981).
- W.M. Moreau and K. Weiss, <u>J. Am. Chem. Soc. 88</u>, 204 (1966); see also J.A. Barltrop,
 P.M. Hayes, M. Calvin, <u>J. Am. Chem. Soc. 76</u>, 4348 (1954).
- 9. R.H. Cragg and A.F. Weston, Tetrahedron Lett. 655 (1973).
- 10. C. Schopf, W. Merz, Ber. 87, 320 (1954).

(Received in USA 27 August 1986)